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Summary

In this thesis the structure and dynamical properties of two ionic fluids are stud-

ied by computer simulation. This proceeded by the calculation of radial distribution

functions, structure factors, neutron scattering patterns, diffusion coefficients and

viscosities. This data are then compared to experimental and theoretical results

where appropriate.

Before looking at the properties of these systems, the run length and system size

effects are investigated. For the run length study, we look at how averaging may be

used to improve the quality of results. As part of this, we investigate the appropriate

run lengths and the suitable degree of averaging required to calculate the properties

of interest. The problem of stable values against long time values is highlighted and

discussed. We introduce a new method for using computing clusters for Molecular

Dynamics simulations, which is well suited to generating data for averaging and

scanning a large number of state points. For the system size investigation, we study

how representative our results are of large systems, by testing a range of system

sizes around our chosen values.

A theoretical model for the structure of polarisable ionic fluids is tested against

Molecular Dynamics simulations, and its predictions are verified. This model is

then investigated further, with predictions made on its dynamic properties, and two

candidates for a possible reduced parameter for dynamics are investigated. The

effect of polarisation on the properties of the system is examined, with the aim of

discovering under what circumstances polarisation plays a large role. The effects of

polarisation and temperature on the cavitation of the system are also investigated.

Finally, the dynamic and structural properties of a complex system, ScCl3, are

investigated. ScCl3 is chosen as it is one of the tricker MX3 systems to simulate,
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owing to its long range chains. Simulation of MX3 systems is important in helping

to understand electrodeposition of refactory metals and the electrolytic separation

of nuclear waste, which typically occur with physical conditions too intense for ex-

perimental study. The dynamic and structural properties of ScCl3 are investigated.
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Glossary

MD Molecular Dynamics. A computer simulation of a system of par-
ticles in which the system’s forces are calculated from the poten-
tials between the particles, and then Newton’s laws of motion
are used to calculate their trajectories.

RIM Rigid Ion Model. This is a simple ionic model, where the ions
are treated as electronically rigid closed shell species, with their
formal valence charges.

PIM Polarisable Ion Model. An extension of the RIM, where the ions
are no longer treated as electronically rigid species, but have
induced multipoles.

SMSM Simple Molten Salt Model. A simple theoretical, rigid-ion model
for ionic fluids.

PSMSM Polarisable Simple Molten Salt Model. An extention to the
SMSM, which allows for the anions to be polarisable.

RPM Restrictive Primitive Model. An equimolar mixture of oppositely
charged hard spheres. Generally similar to the SMS.

HNCM Hypernetted Chain Model. A theoretical approximation for flu-
ids, which is not thermodynamically consistent.

RDF Radial Distribution Function. A measure of how dense the other
particles around any given particle are, relative to the ideal gas.

MSD Mean Squared Displacement. A function which gives a measure
of how far on average the particles have moved in a given time.

k-vectors When performing calculations in reciprocal space, k-vectors are
points in that reciprocal space.
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Chapter 1

Introduction

In this thesis, we use Molecular Dynamics simulations to test a theoretical model

[1] for the structure of polarisable ionic fluids. In order to easily test the theory at a

wide range of state points, we make use of a new method of running programs on a

computing cluster. Having verified the theory, we go on to investigate the dynamic

properties of a system it works with, using the theory in a predictive role.

Finally, we apply these Molecular Dynamics techniques to a system of practical

interest, molten ScCl3. MX3 systems are of technological importance due to their

use in electrodeposition of refactory metals [3] and electolytic separation of nuclear

waste [4]. ScCl3 was selected as it displays many of the more tricky “covalent”

characteristics, which require a polarisable ionic system to be modelled correctly [2].

1.1 Molecular Dynamics Simulation

Molecular Dynamics is the technique of simulating a system by solving the classical

equations of motion for the particles. Using the Born-Oppenheimer approximation,

it is possible to describe the system in terms of the positions and momenta of its

atoms and ions. MD simulations work by calculating the force on all the ions, and

then solving Newton’s laws of motion, lead to predictions of the velocities and posi-

tions of the particles at some later time. These are calculated for one timestep later.

By repeating this process for a succession of timesteps, we produce the trajectory

of the system for the timescale of interest. We can use the trajectory to calculate

1



many measurable properties of the system, as well as to examine the microscopic

processess involved in these properties.

The length of the timestep depends on the system under investigation. We must

ensure that it is not too long, otherwise the system won’t display the correct classical

trajectories. Using a timestep that is too short will result in unnecessary calculations

being performed. The timestep for any system must be tuned in advance of the data

collection simulations. For the ScCl3 systems, a timestep of 15 au was used (1 au

= 2.418 x 10−17s). The theoretical system makes use of scaled units (see section

1.5) to maximise its applicability. Its timestep was 0.005 scaled time units. Both of

these timescales provided smooth, well behaved trajectories in the regions of interest,

where the equations of motion could be properly integrated.

The number of timesteps to run for (run length) is affected by the available

computing resources, and the properties under investigation. Details of the criteria

for the selection of the run lengths can be found in chapter 2.

In order to correctly simulate a chemical system by MD, one must have a realistic

interaction potential to describe the forces between the particles. For this thesis, this

was relatively straightforward. For the theoretical model, the potential was already

specified. For ScCl3, previous work done in the group had produced a potential

which was quite accurate.

When looking at the properties of a bulk liquid (as we are), it is important

to remove any surface effects that might be introduced by the simulation. This

is achieved by using periodic boundary conditions [5], where the simulation cell is

repeated through space, creating an infinite lattice. Whenever a particle moves

out of the simulation cell, it is replaced by one of its periodic images entering the

simulation cell from the opposite face. This can be seen in figure 1.1.

Each ion then has an infinite number of images of itself. However, when calcu-

lating short range interaction terms, we only need to consider the ion once. As such,

the short range interaction between two ions i and j is calculated between i and the

2
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Figure 1.2: The calculation of the
positions of the Nearest Neigh-
bours

nearest periodic image of j. This is known as the mimimum image convention [6],

and can be seen in figure 1.2.

For longer range interaction terms, such as the Coulombic charge-charge inter-

action (given by
QiQj

rij
), the terms don’t become negligibly small on the scale of the

simulation cell. We need to include the periodic images of the ions. This procedure

is handled in reciprocal space by the use of Ewald Summations [7].

1.2 The Rigid Interaction Model

In a simple ionic model, with ions treated as rigid spheres unaffected by their sur-

roundings, the system is best represented by a pair potential of Born-Mayer form:

Uij =
QiQj

rij

+ Bije
−αijrij −

∑

n=6,8

Cn
ij

rn
ij

fn
ij (1.1)

This model is also known as the Rigid Ion Model (RIM). The
QiQj

rij
term describes

the coulombic interactions between two ions, i and j, with formal charges Qi and

Qj at a separation of rij. The Bije
−αijrij term is the short range repulsion term due

to the Pauli Exclusion Principle, which prevents overlap of the closed shell electron

wavefunctions. Finally, the
∑

n=6,8

Cn
ij

rn
ij

fn
ij term is the dispersion energy. This is

caused by attractive perturbation effects of the electron distribution on one ion on

3



the distribution on a neighbouring ion, such as van der Waals forces.

All compressibility and polarisability effects are ignored by this model. It doesn’t

allow non-spherical electron distributions, as caused by such things as being in an

asymmetrical coordination site. Because of this, we will normally use a model which

allows non-spherical distributions via the effect of polarisation, the PIM.

1.3 Polarisable Ion Model (PIM)

This model is based on RIM, but adds polarisability to the ions [8], most commonly

(but not always) the anions. These dipoles interact both with themselves, and with

the ionic charges present.

µ asymptotic

µ short-range

Figure 1.3: Origin of the “short range” and “asymptotic” contributions to the dipole
that is induced by cation motion in a condensed phase.

In the case where the ions and the dipoles are far enough away that their electrons

don’t overlap, then the resultant dipole is due only to coulombic effects. It is given

by equation 1.2:

4



~µi = αi

(

∑

j

Qj~rij

r3
ij

−
∑

j

[

~µj

r3
ij

− 3~rij (~rij · ~µj)

r5
ij

]

)

(1.2)

In the condensed phase, the dipole induction is modified by the overlap of the

electron clouds. We can see this by considering an anion, surrounded by cations,

one of which is off its lattice site. This is depicted in figure 1.3. As one cation moves

away from its lattice site, then it will induce a dipole on the polarisable anion (the

asymptotic dipole). This induced dipole will be such that the negative end points

towards the cation that is opposite the one which moved away. The overall dipole will

be reduced in magnitude by a second dipole (the short-range dipole), in the opposite

direction. This is caused by electron cloud overlap - the anion’s electrons will move

into the gap left by the cation which moved. Thus, the asymptotic (coulombic)

component is opposed by the short range interaction. The short range component

is given by

~µi
short-range =

∑

j 6=i

αif(rij)
Q~rij

r3
ij

(1.3)

where the fij term is the short range damping parameter. Electronic structure

calculations have shown that this is best described by a modified Tang-Toennies

function [9]:

fn
ij = −e−brij

n
∑

k=0

(brij)
k

k!
(1.4)

This tends to -1 at r = 0, and to 0 at large r. The b term is the short range

induction damping parameter, which scales with the sum of the ionic radii:

b =
c

σi + σj

(1.5)

The c term is a constant for the given stoichiometry. For anions, it can reduce

the resultant dipole by up to 50%, an effect known as induction damping.

Previous studies have shown how polarisation affects the structure of solid and

liquid ionic systems [10, 11]. Some investigation has been done in how polarisation
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affects the dynamics in real MX systems [12], real MX3 systems [13], the liquid-

vapour interface [14], and a few other systems.

1.4 Theoretical Models for Ionic Systems

With MD simulations, we use an ionic model which describes the individual ions, and

then calculate forces and trajectories for each ion. With most theory calculations,

we produce an equation for the property of interest, based on an ionic model, and

solve this directly. This makes MD simulations more computationally expensive to

perform.

Theories of fluid structure are faster to compute results from, and can quickly

provide a fluid’s RDF for many densities and temperatures. They allow you to trace

behaviours over a wide range of thermodynamic states, and for some properties (eg

the low k limit of the structure factor) they can give a result with much less com-

putation that MD can. However, in order to make them solvable, it is necessary

to introduce simplifications. These lead to systematic errors, particuarly thermo-

dynamic inconsistencies. As such, theories complement MD, and neither can really

replace the other.

At low density (just above the ideal gas region), any fluid only has weak inter-

actions. In this region, we can express g(r) (the RDF) as g(r) = exp(−u(r)
kT

).

At higher density, multi body effects come into play. The presence of a third

body will restrict the available conformations for a pair of ions. As such, we need

to alter the g(r) expression to include many body effects. This is normally done via

an extra term:

g(r) = exp

(

−u(r)

kT
+ W (r)

)

(1.6)

The trick is then in picking a function for W(r). Many choices for W(r) have been

explored, but a discussion of these is beyond the scope of the thesis. For this thesis,

I have been involved in testing a theory whose W (r) is based on the Hypernetted
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Chain Approximation (HNC). The theory has been developed for polarisable ionic

fluids by Dr A. Gray-Weale in this group. A full account of this theory (which is

beyond the scope of the thesis) is given in reference [1].

The use of equation 1.6 normally requires a pair potential, as is the case where

the dipoles behave as classical oscillators in thermal equilibrium with the ionic coor-

dinates, or for the rigid ion model (where polarisation effects are ignored). However,

the situation we’d really like is to have the system in its ground electronic state, as

this is more physically correct, since kT � �
ω. This can be represented by min-

imising the energy across the whole system, solving ∂V
∂µi

= 0, for the dipoles with the

ions fixed. In this situation, our system is no longer governed by pair potentials. In

reference [1], a way to calculate the RDF for a system with ∂V
∂µi

= 0 and with the

usual fluid structure theory (HNC) is proposed. In section 4.1, we will test how well

this theory works.

Theoretical models deliver a “broad brush” approach. As such, it is normal to ap-

ply them to a simple ionic model. A common approach is to pick the Simple Molten

Salt Model (SMSM) [15]. With a SMS, there are a number of simplifications to the

ionic model. Firstly, the short range attractive part is given by USR(r) = 1
9
(σ

r
)9. The

system has ions of equal and opposite charge (MX stoichiometry). For the theory

we’re examining, the model has been extended, and the anions are polarisable.

1.5 Corresponding States

When using theoretical models, it is normal to try to make them as general as

possible. One common way to aid in this goal is through the use of corresponding

states [16]. With corresponding states, we try to come up with a minimal set of

parameters to specify the system. We then apply relationships to generate all the

other parameters of the system from these. Thus, when moving from one system to

another, we only need to know a few specific things to be able to come up with all

the parameters our simulation or theory requires. In essence, we combine physical
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quantities together into a smaller number of dimensionless parameters, and use only

these to represent the differences between systems.

One example of corresponding states is with Lenard-Jones systems. Here we

can use the scaled temperature T ∗ = kT
ε

(where ε is the depth of the potential

minimum) in calculations, to encapsulate the system differences. A more common

use of corresponding states is within the Restrictive Primitive Model (RPM), a

simple model for ionic systems. Here, instead of u = βQ2

εr
, we use a general form of

u = β∗

r
(where β∗ = Q2β

ε
, ε is now the dielectric constant, and β is the reciprocal

thermal energy β = 1
kT

). We now only need the one parameter, where previously

we required three. As an aside, we also notice the use of ε in these equations. One

of the objectives of this thesis is to see to what extent the effects of polarisation on

the properties of the simulated fluid could be treated as a dielectric screening effect

in the manner of the RPM. More on this can be found starting in section 4.3.

By writing our theory to take advantage of such corresponding states, we can

make it far more general. As seen above, we define a scaling (or reduced) parameter

in terms of our physical parameters, and then use only this. By altering our scaling

parameter, we can move to the system of interest. Such changes, for example, allow

the RPM to model both molten (T ∗ = 0.05 at critical point) and aqueous NaCl

(T ∗ = 0.15 at 298k), simply by altering β∗ or T ∗ accordingly.

The scaling parameters for use with the RPM on MX systems are well known

[16], and have been shown to apply with only limited changes to polarisable systems

[1]. In chapter 4, we will investigate a number of potential scaling parameters for

describing the dynamic properties of the system.

1.6 Properties of Interest

In this section, we will look at the theoretical basis for the properties of interest

in our ionic fluids. These are Pressure, Diffusion, Viscosity, Structure Factors, and

Neutron Diffraction Patterns.
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1.6.1 Pressure

The pressure of the system can be determined by a number of different methods,

depending on which statistical mechanical properties are closest to hand during the

simulation.

For the MD code used with this thesis, the pressure was calculated from the

virial pressure expression, which for this material has three components. The first

component is the “kBT” term, equal to ρkBT . This is the ideal gas pressure. The

second component comes from the short range potential. The final component is

the coulombic pressure. A special property of coulombic fluids is that the coulombic

term of their pressure is directly proportional to the coulombic energy.

Full details of calculating pressures for MD systems can be found in reference

[17].

1.6.2 Structure Factors

To get the structure factors for a MD simulation, there are two main ways. We will

see one of them in section 1.6.3, when we calculate Neutron Scattering Patterns.

For calculations of the partial structure factors, the second method was employed.

In this, we directly average over the correlation functions of the Fourier components

of the ion densities:

Sαβ(k) = (NαNβ)−
1

2

〈

∑

i∈α

∑

j∈β

exp[i~k.~rij ]

〉

(1.7)

Where α and β are the ion types, e.g. Sanion,anion.

In effect, this looks at all the possible k vectors in turn, and calculates their

contribution. As we get to larger k values, the number of vectors for that k distance

increases rapidly. As such, it doesn’t scale very well out to large distances. Also,

the smallest k value we can see if restricted by the periodic boundary conditions to

be 2π
L

. Due to these restrictions, the structure factors haven’t been calculated at

out as far as those from the theory, nor at quite such low k values. It is at these low
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k values that the special properties of coulombic fluids manifest themselves, so this

method is may be of use for investigating those properties in larger box sizes.

We use this method to calculate the three partial structure factors, anion-anion,

anion-cation and cation-cation. From these, it is possible to calculate other structure

factors. For MX systems, the number-number structure factor is given by

Snn =
Scc + Saa + 2Sca

2
(1.8)

where cc is cation-cation, ca is cation-anion etc. Meanwhile, the charge-charge

structure factor for MX systems is found from

Szz =
Scc + Saa − 2Sca

2
(1.9)

1.6.3 Neutron Scattering Patterns

The main way to calculate the neutron scattering patterns for a MD simulation

is to work from the structure factors, and weight them according to the neutron

scattering length for each ion (found experimentally).

One way to calculate the structure factors was given in section 1.6.2. As was

noted there, it is computationally expensive to use this method at large k values. A

second method to calculate the structure factors is simply to calculate the Fourier

transformations of the RDFs, computing:

Sαβ(k) = δαβ + 4πn0
√

cαcβ

∫

dr(gαβ(r) − 1)r
sin(kr)

k
(1.10)

Where cα is the concentration of species α. This method is much faster, provided

the RDFs have been computed (which they have in this case). However, this method

can suffer truncation errors as k becomes commensurate with the simulation box size.

Therefore, we are restricted to calculating out to values smaller than the box size.

For us, this is a sufficient distance, and so this is not a problem.
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In this thesis, all the neutron scattering patterns were calculated using structure

factors from equation 1.10.

To go from the structure factors to the neutron scattering pattern, we use

NStot(k) = b2
ccc [Scc(k) − 1] + 2babc

√
caccSca(k) + b2

aca [Saa(k) − 1] (1.11)

where bx is the coherent neutron scattering length of species x, cx is the concen-

tration of species x, Sxx is the x-x partial structure factor, and a and c are anion

and cation respectively.

This resultant function NStot(k) is directly comparable with the experimental

total neutron weighted structure factor.

1.6.4 Diffusion

The diffusion coefficient for any given species can be found from the mean squared

displacements of the ions of that species by applying the Einstein relation

Da = lim
t→∞

〈

|δ~ra (t)|2
〉

6t
(1.12)

where δ~ra (t) is the displacement of any ion of species a in time t. An alternative

route to the diffusion coefficient is via the velocity auto-correlation function,

Da =
1

3

∫ ∞

0

〈~va (t) · ~va (0)〉 dt. (1.13)

One problem with the use of equation 1.13 it is that it is difficult to tell when

the correlation function has died away to zero. This can lead to small, systematic,

long-time correlations being neglected. Because of this, all the diffusion coefficients

in this thesis were calculated with equation 1.12.

For examples of the curves produced by MSD calculation programs, and reading

them, see section 2.2.2, especially figures 2.2 and 2.3. To read the graphs, we find

the differential of the MSD graph, and take the value at the first proper minima, as
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is shown in figure 2.3. A more detailed description on using MSDs to find diffusion

coefficients, including reading the graphs, can be found in chapter 2 of reference

[12].

1.6.5 Viscosity

This is another dynamic property of interest, which is relatively easy to calculate.

The shear viscosity η is given by the time integral of the autocorrelation function of

an off-diagonal element of the stress tensor:

η =
β

V

∫ ∞

0

〈σαβ (t) · σαβ (0)〉 dt (1.14)

The viscosity is a multi-particle property. Being a property of the system as a whole,

it is not possible to perform additional averaging over the N particles. This leads

to η having much poorer statistical properties than the likes of D. It is possible to

improve the precision of the data by averaging over different components, αβ = xy,

yz, xz, x2−y2, 2z2−x2−y2 of σαβ .

To find the value for the viscosity, we integrate the average stress correlation

function, and then read off the value at the first proper maxima, as seen in figures

2.4 and 2.5. As for diffusion, example curves can be found in section 2.2.3, and a

full description is given in chapter 2 of reference [12].
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Chapter 2

Run Lengths And Averaging

Most of the properties of interest are averages. We need to consider how long it

will take them to reach their steady values, so we can ensure that our runs are long

enough to give meaningful results. We also need to investigate if averaging over

independent runs at the same state point will offer any improvements on the quality

of the data. This is necessary because we want to test a theory which does not suffer

from finite run lengths.

In this chapter, we look at averaging and parallelisation with computer clusters,

and see how this can help us. We then consider some of the pitfalls associated

with deciding on appropriate run lengths. Finally, we apply this to our systems of

interest, to decide the run lengths and averaging to be used in our data gathering

runs.

2.1 Parallelism and Simulations

We need to ensure that our results are reproducible. One of the things commonly

done to ensure reproducability is to repeat every experiment a number of times.

The repeated results can be used to verify that you have a stable value. They can

also be averaged together, to improve the statistics of the results.

In computational simulations, typically the computing time is expensive and in

short supply. Many people opt to run a simulation for as long as they can to get

a result, instead of doing a number of identical shorter runs, which may not be
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sufficient to get any results from.

Over recent years, the move has started from using single, large computers to

clusters of smaller computers. In many cases, a cluster of smaller computers working

together offers a much better price/performance ratio than a single, large computer.

However, programming for a large number of machines is significantly trickier than

for one single machine, and often involves large communication overheads, which

marr the performance.

2.1.1 Programming for Clusters

The Message Passing Interface (MPI) [18] is a language-independent way of pro-

gramming for clusters. It defines ways to send, receive and manage data between a

number of computers. It requires the programmer to explicitly code how the differ-

ent nodes of the cluster will interact with each other, and how to parallise the task

in hand. This is relatively hard, and the method carries with it a fair number of

overheads, but when done well allows the job to be efficiently spread over a number

of machines. There are a number of MPI implementations, the most common of

which is MPICH [19].

An alternative model for clusters is to write locally multi-threaded jobs, and

then use an environment like OpenMosix [20] to handle distributing threads around

the cluster. This requires less programmer effort, and is suitable for different kinds

of tasks (typically better for more independent, concurrent tasks) [21].

The other main model for clusters is PVM [22]. Programming this is similar to

MPI, but the parallisation is handled differently, and offers some advantages and

disadvantages over MPI [23].

A full description of these methods of programming clusters is well beyond the

scope of this thesis. As a result of the level of support provided by the Oxford

Supercomputer Center [24], the MPI environment was selected.
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2.1.2 Using MPI with MD

As we have already seen, there are three problems we face - how to get repeatable

data, how to easily get data from a number of nearby state points, and how to make

effective use of the supercomputer clusters that we have access to.

One solution would be to write a series of MPI helper libraries, to co-ordinate

the running of a number of independent jobs across a cluster. Such a scheme would

be limited in run length by the speed of the individual cluster machines (it would

not sub-divide the work of one job across machines). However, as we will see later,

this isn’t a large problem. The scheme should touch as little of the existing code

base as possible, should be easy to use, and should allow one to quickly set up

runs at a large number of state points. Thus, the task of collecting data for four

adjacent temperatures, with four runs per state point, moves from being lengthy

and problematic to fast and easy.

Such a system was writen, and more details on it are to be found in the appendix

A.

2.1.3 Long Runs and Averages

In order to make use of the cluster, we need to consider a number of things. We

need to find the minimum run length which will give us correct values. We need to

see how averaging will affect our results. We need to consider the available resources

- are lots of shorter runs better than a small number of larger runs?

One thing we must be very careful of is stable values versus long time values.

Later on in this chapter, we will see several examples of this phenomena. A stable

value is considered to be the repeatable value that is tended towards as a number

of identical length runs are averaged. A long time value is considered to be the

repeatable value that is tended towards as the run length is increased.

What we must be careful of is where the stable value at a given run length isn’t

the long time value. If we are not careful, we may pick a run length that gives
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repeatable but incorrect answers. To avoid this, we must ensure that when testing,

we do runs at a number of different run lengths, and ensure that our chosen length

gives the same answer as longer runs.

Using figure 2.4 as an example, we see that for 100,000 step runs, the stable value

for the shear viscosity is around 1.1x10−13au. For 200,000 step runs, the stable value

is around 1.4x10−13au. For 500,000 and 1,000,000 step runs, the stable value is the

long time value of about 1.3x10−13au. Were we to only do runs at 50k and 100k

steps, we might erroneously decide that 100k was a long enough run, as it gave a

repeatable answer. However, by doing longer runs, we see that while the 100k value

is repeatable, it isn’t correct!

For all the properties of interest, we must do test runs to decide on an appropriate

run length and degree of averaging. We must do runs larger than our intended

length, to ensure a repeatable value is the long time value. We should also check

that we are applying enough averaging. This must be done for every property

under investigation, as the results will differ between properties, especially between

structural and dynamic ones.

2.2 ScCl3 Testing

For this section, a number of runs of different length were done, and then a variety of

averaging was applied to these. The aim was then to discover what the optimal run

lengths and averaging would be for the properties of interest, given the computing

resources available. For the ScCl3 testing, the sets looked at were 100k runs at 1,

2, 4 or 8 averaged, 200k runs at 1, 2 or 4 averaged, 500k runs at 1, 2 or 4 averaged,

and a single 1m run.

After looking at all the properties of interest, it was decided to do the data

gathering runs at 400k steps, averaged over 2 independent runs.
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2.2.1 Pressure

The first property of interest for ScCl3 is the pressure. Figure 2.1 shows us the

effects of the averaging and run length on the system’s pressure.

Looking at 2 runs averaged, we see that the 200k and 500k runs have largely

converged. The fact that at 4 runs, they are still converged together, but at a slightly

higher value is of slight concern. However, the magnitude of the difference is very

slight, and could possibly be considered a measure of the error.

We can see that the 500k and 1m runs are at the same value, which tells us that

by 500k runs, the pressure value has converged with respect to run length. Since

the 200k and 500k runs are converged at 2 and 4 runs, this tells us that by 2 runs

averaged, the value has converged with respect to run averaging.

The chosen value of 400k and 2 runs averaged should be long enough and with

enough averaging. It also falls in the centre of the graph, and as such should produce

meaningful results.

Figure 2.1: The Pressure of ScCl3 as the run length is altered, and different numbers
of runs are averaged over.
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2.2.2 Diffusion

Another set of properties of interest are the diffusivities and conductivities. In this

thesis, we have tended to focus on ion diffusivities, rather than on conductivities.

In general, very similar results to the diffusivities are found for the Nernst-Einstein

conductivity, since this is a weighted average of the diffusivities. Real conductivities

require much longer runs, and so their values were not were not routinely calculated.

When looking at the run lengths and averaging to be used, as seen in figure 2.2,

only anion diffusivities have been studied in detail. However, it was checked that

the cation diffusion and the Nernst-Einstein conductivity showed identical trends,

as would be expected.

Figure 2.2: The effect of run length
and averaging on the Cation MSD
Difference values for ScCl3.

Figure 2.3: Using several similar
state points graphs to aid in reading
off MSD Difference values.

The low average runs at 100k and 200k have close, but slightly incorrect values.

With the 100k runs, at high averages, the results tend towards the correct value,

but are still very slightly off. The high average 200k runs are better than their 100k

equivalents, but are still very slightly off. All the 500k runs give the correct values.

However, at low averages, it is very hard to see exactly where to read off. Adding

averaging doesn’t alter the (correct) value, however it does make it significantly

easier to identify the region of the graph to read from. The difference between an
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average of 2 and 4 is slight, and can be equally achieved by comparing the graphs

from two similar runs (which will have almost identical read-off points).

As such, using a run length of 400k, and averaging over two runs wouldn’t be

quite good enough to be sure, if we were looking at a run on its own. However, as

we are always looking at a number of similar runs, it is fine. This can been seen in

figure 2.3.

2.2.3 Viscosity

Figure 2.4: The effect of run length
and averaging on the Stress Corre-
lation Integrals for ScCl3, with the
long time large average value indi-
cated.

Figure 2.5: Using several similar
state points graphs to aid in read-
ing off Stress Correlation Integral
graphs.

We can see that all of the graphs in figure 2.4 are very noisy. Even runs done

during the initial investigation of 2 million steps showed a fairly high degree of noise.

This can be traced back to the much lower degree of averaging during the calculation

than in other properties, as discussed in section 1.6.

The 100k runs are quite off, coming in with a values too low. The higher average

runs do have a fairly consistent value, however it’s not the correct one. The 200k

runs are also off, with values that are too high. For the 500k runs, the single run

has almost the correct value, but one might be tempted to read off at a different

(incorrect) point. The higher average runs give the same (correct) value, and the
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region to read from is quite easy to see. The single 1m run has the same value as

the 500k runs, indicating we’ve reached the long time value.

With 400k runs and only 2 runs averaged, spotting the peak to read from might

be slightly tricky. However, we can take advantage of the fact that runs at similar

state points will have very similar regions to read from. As such, provided we plot

a number of similar runs at once, we are able to reliably read off the correct values,

having easily spotted the peak region by looking at the multiple curves. A 400k run

is also a long enough run to get the correct value out, providing you can find the

correct point to read at, as seen in figure 2.5.

2.2.4 Neutron Diffraction Pattern

Figure 2.6: The effect of run length and averaging on the Neutron Scattering Pat-
terns for ScCl3, showing the limited effects seen.

As seen in figure 2.6, the run length has very little effect on the neutron scattering

pattern. Even the shortest run with the minimal averaging gives almost the same

scattering pattern as the longest run with the greatest averaging.

This highlights the big difference between the run lengths required for structural

properties compared to dynamic properties. The structural patterns are given by the
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common (typically ground) states and positions. In dynamics, most of the processes

depend on infrequently occupied rare (often excited) states and positions. The

neutron pattern looks at where the ions normally are, while conversely the diffusion

requires them to move through locations where they are normally not. Thus, in

order to get the same amount of time in the states which have the most effect on

the behavior of interest, we must run the simulation for much longer for dynamics

than for structures.

If we were only looking into structural issues, we could get away with very short

runs and minimal averaging (if any). As it is, the chosen run length and averaging

is more than enough.

2.3 Theoretical Model Testing

For this section, again a number of different length runs were done, with a variety of

averaging strategies applied to them. As with the ScCl3 work in section 2.2, the aim

was to discover the optimal run lengths and averaging, for the properties of interest.

In the testing, the sets were 50k runs at 1, 2 or 4 averaged, 100k runs at 1, 2 or 4

averaged, and 200k runs at 1 or 2 averaged.

After analysing the results for the properties of interest, it was decided to perform

the data gathering with runs of 100k steps, averaged over 2 independent runs.

2.3.1 Pressure

Figure 2.7 tells a similar story to the ScCl3 work in section 2.2.1, but with slightly

smaller run lengths. We can see that 200k runs averaged twice offers very little

advantage over 100k runs averaged twice. As such, opting for the shorter run length

should be fine. The difference between 100k at 2 and 4 runs is small in absolute

terms, and so is nothing to worry about. It may be a useful indication of the errors

in recording the pressures.
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Figure 2.7: The Pressure as the run length is altered, and with different numbers of
run are averaged over.

2.3.2 Diffusion

Looking at figure 2.8, we see similar things as with ScCl3 (section 2.2.2). The lowest

run length and averaging doesn’t give the correct value, though the high averaging

almost does. With the low averages at 100k and 200k, the graphs are quite noisy,

so it’s hard to read off the correct value. The higher averaging at 100k and 200k

avoid this, so we’re fine with using 2x100k for our data gathering.

2.3.3 Structure Factors

Looking at figures 2.9 and 2.10, we see only limited differences between the graphs.

Apart from the very lowest run lengths and averaging, all of the runs give perfectly

fine structures. As such, 2 runs at 100k is more than good enough to give us our

structure data.

This results re-inforces that fact that dynamics are much harder to find than

structures, and require much longer runs. Were we only studying structures, two

50k runs would have been good enough for all except the very highest resolution

studies.
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Figure 2.8: The MSD Differences for the cations as run length is altered, and different
numbers of runs are averaged over.

Figure 2.9: The Charge-Charge
structure factors for the theoretical
system as run length is altered, and
different numbers of runs are aver-
aged over.

Figure 2.10: The Number-Number
structure factors for the theoretical
system as run length is altered, and
different numbers of runs are aver-
aged over.
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Chapter 3

System Size Effects

As was seen in section 1.1, we have to apply a number of tricks to deal with the small

simulation cell sizes. Some of these will affect our results. Because the objective is

to test a theory, we need to find the system size at which results will be close to

those of an infinite system.

In most cases, the system size (box size and number of particles) is constrained

by the available computing resources. The larger the number of particles in the

system, the longer the runs will take. We therefore tend to pick the largest system

size that we can, which still gives manageable run times for the run lengths we’ve

decided are needed.

While we may have only limited control over what system size we pick, we should

still try to test what sort of an effect our chosen size will have on the results we

produce.

3.1 Effects on ScCl3

For this section, all runs were done for 400,000 steps, and averaged over two inde-

pendent runs, as decided from chapter 2. The exceptions are the 864 ion run, where

a system failure meant the runs were very slightly shorter, and for the 1372 ion run

(marked with a red cross), which was done for 500,000 steps and with only one run.

All our data gathering runs in chapter 5 were done with 500 particles.

Looking at figure 3.1, we see large effects on the pressure at the small system
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Figure 3.1: The System Size Effects
on the pressure in ScCl3.

Figure 3.2: The System Size Effects
on the viscosity in ScCl3.

Figure 3.3: The System Size Effects
on the anion and cation diffusivities
in ScCl3.

Figure 3.4: The System Size Effects
on the Neutron Scattering Pattern
of ScCl3.

sizes. As we move into larger systems, the pressure seems to converge. It seems that

our chosen size of 500 particles has quite small system size effects for pressure, so

its result should be fairly representative.

In figure 3.4, we see remarkably little alteration in the neutron diffraction pat-

terns as we increase the system size. The second peak, and the first minima show

slight changes, but the pre-peak is largely unaffected. Since the pre-peak (at ≈ 1

au−1) depends on intermediate range ordering (see section 5.1.1), we might have

expected a bigger effect on it with the smaller box sizes. Given the importance of

intermediate range ordering on the neutron pattern, it would be interesting to run
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a simulation with a very much larger box size, and see if anything changes. Since

the neutron scattering pattern requires much smaller run lengths than the other

properties in order to give good values, such a study wouldn’t be too hard to run.

Figure 3.3 shows that the diffusion is affected by system size for small box sizes.

However, for the larger box sizes, there is very little variation at all. It seems that

our value of 500 is the first for which the diffusivities have converged, and as such

its values should be fairly representative.

Figure 3.2 shows a more complex picture for viscosity. Again, small systems are

insufficient for good values. However, the picture doesn’t settle as much for larger

systems as the other properties. Without data for even larger systems, we can’t be

sure what value the viscosity will eventually tend to. This means that our values

from 500 ions may not be properly representative, but hopefully any trends shown

will be correct. Without a run from an even larger system, we can’t quantify how

far our 500 ion system’s values will be out.

In general, the system size effects on ScCl3 at 500 particles are slight, except for

the viscosity.

3.2 Effects on Theoretical System

Figure 3.5: The System Size Ef-
fects on the pressure in Theoretical
Model.

Figure 3.6: The System Size Effects
on the diffusivities in the Theoretical
Model.
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For this section, all runs were done for 100,000 steps, and averaged over two

independent runs, as decided from chapter 2. All our data gathering runs in chapter

4 were done with 686 particles.

Looking at the pressure from figure 3.5, we see a very marked effect for small

box sizes, with a large variation in values. However, at larger box sizes, the value

converges quite nicely. It appears that our values from 686 ion systems will be

representative.

Figure 3.6 shows two things. Firstly, we can see that the diffusivities have a

complex relationship with box size, but one which appears to converge for the larger

box sizes. Secondly, we see that the anion-cation diffusion difference is neither

constant, nor dependent on the magnitude of the values. Clearly, some complex

relationship exists, which cannot be easily explained.

From figure 3.6, we can’t be entirely sure how representative our diffusion coeffi-

cients from a 686 ion system will be. It looks that the values are bouncing around a

consistent value in the last 3 system sizes, however without data from an even larger

system, we can’t be sure. We hope that our values will show all the correct trends,

even if it may later transpire that their absolute values are very slightly out.

A system size of 686 ions seems like it should give fairly representative results,

but data from a larger run than 1024 ions will be required to verify this fact.
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Chapter 4

Theoretical Model Work

In this section, we will look at how MD studies may be used to confirm and augment

the predictions of the PSMS model.

The data from every state point are in fact the average of two independent runs

at that state point. This allows us to have greater confidence in our results than

might otherwise be the case.

Scaled units (see section 1.5) are used with this model.

4.1 Validating The Theory

Before we can go on to make predictions on the dynamic properties of the theoretical

system, we need to ensure we can generate overlapping results. This has two aims,

the first of which is to ensure that we are correctly modelling the same system.

The second of these is to validate the theory’s results. As we saw in section 1.4, the

theory makes a number of approximations, and is not thermodynamically consistent,

while MD is. If we do get an agreement in results, we have shown that the results

from the theory are correct.

As has already been seen, the theory entirely concentrates on structural aspects.

With this in mind, we need to check the overlap between our structural data and

the theory’s. The structural data in question is the Szz (charge-charge structure

factor), the Snn (number-number structure factor) and the RDFs. These should be

compared for a number of different temperatures and polarisabilities, to ensure a
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good match.

As we can see from figures 4.1, 4.2, 4.3 and 4.4, we do have the required good

agreement between the simulations and the theory.

Figure 4.1: Szz match at
α=0.075, T=4510k

Figure 4.2: Szz match at
α=0.100, T=5588k

Figure 4.3: RDF match at
α=0.075, T=5588K

Figure 4.4: RDF match at
α=0.100, T=5588K

However, we have not just checked for good agreement at only these four state

points. Thanks to the use of the MPI code (see section 2.1.2), we have structural data

from a very large number of state points. Correct matches were checked at a very

wide range of densities and polarisabilities, as well as at three separate temperatures.

This allows us to have a high degree of confidence in the accuracy of the theory’s

predictions, as well as in our ability to model the same system as it.

Without the MPI system, it is hard (and typically quite time consuming) to

thoroughly test theories. The MPI method is not only a faster simulation method

(when covering a number of state points), but through its automation of running
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MD simulations at a wide range of state points, is a large help with the development

of new theories.

4.2 Cavitation

Figure 4.5: Showing the regions of cavitation and non cavitation, and how density,
polarisation and temperature affect these.

One of the striking predictions of Gray-Weale’s theory was a very strong effect of

polarisation on the apparent phase separation of the fluid into high and low density

regions. Since the critical behaviour of ionic systems has been the focus of much

theoretical interest, it is important to validate this prediction.

At lower densities and temperatures, the system can become mechanically un-

stable [25]. The point of mechanical instability need not be near thermodynamic

instability, and happens to fall within the region of interest. When a system is me-

chanically unstable, it is liable to cavitate. On cavitation, the system splits into two

parts, a higher density region and an empty region. The spinodal curve is the bound-

ary between the unstable region (mechanically unstable, cavitation occurs here) and

metastable region (unstable, but requires a trigger to cavitate). The binodal curve

is the boundary between the metastable and stable regions.
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The theory predicts that polarisability will inhibit cavitation. Specifically, it

predicts a strong supression of large scale number density fluctuations with polar-

isation. However, as the theory is thermodynamically inconsistent, these results

previously couldn’t be trusted. Looking at figure 4.5, we see that prediction does

appear to be the correct. Figure 4.5 is a plot of dp

dρ
for a number of temperatures in

rigid and polarisable runs. These graphs validate the theory’s predictions, since the

polarisable run curves occur above their rigid counterparts. The plot of the pres-

sures themselves can be seen in figure 4.10. It can be easily seen that the pressure

differential graph (4.5) is much better for spotting the regions of cavitation than the

pressure graph (4.10), which is why it has been used. To spot cavitation in figure 4.5,

we need to look at the gradient. Straight, positive lines indicates that the pressure

increases with increasing density, as would be expected. When the gradient is only

very slightly positive, the system is close to cavitation. When the gradient is nega-

tive, the system has cavitated. As we decrease the density, the pressure increases,

because the cavity is growing.

The figure also shows that in many cases, polarisability will prevent cavitation

for one jump in density, a change of 0.05 or about 20%. The graph also highlights

the regions approaching cavitation, where the dynamic properties may be affected

by impending cavitation, but where cavitation hasn’t occured. In these areas, the

dynamic properties will may not follow the non cavitated trends, owing to the un-

usually large distances between the ions. As it may not be immediately obvious

that the system is affected by impending cavitation, the differential graph is a good

way to spot such regions. However, the effect to which the proximity to the cavita-

tion point will affect the dynamic properties is unknown, and would require a large

number of simulations around the point cavitation to study.

Unfortunately, we only have data on 3 different temperatures, which is not suf-

ficient to quantify the temperature effect on preventing cavitation. Runs at a few

more temperatures would be required to do this. In general though we can see that
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increasing the temperature inhibits cavitation, as would be expected to be the case.

Figure 4.5 shows us the effect that polarisation has on the occurance of cavi-

tatition, which is not insignificant. This means that a system such as the RPM

will be insufficient for properly predicting cavitation. Many studies (such as [25]) of

phase separation use the RPM, to keep the systems simple enough to allow study.

However, these results indicate that polarisation does have a not insignificant role

to play in cavitation and possibly the coexistence curve. As such, future studies

may wish to include it.

Figure 4.6: The system having cavitated. Occurs at low density, and is more likely
without polarisability.

Looking at figure 4.6, we notice that there is charge neutrality at the surface of

the cavity. On cavitation, SNN becomes large at small k, as the cavitation causes

a hole to form in the liquid. However, limk→0(Szz) = 0, i.e. charge neutrality is

maintained, since anything else would incur a large energy penalty.

At the surface, the ions will be in an asymmetric environment. In any asym-

metrical environment, polarisation is important. In ScCl3, polarisation has a big
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effect to play on how the chlorides behave in their asymmetric, 2 coordinate about

scandium environment, as we shall see in chapter 5. We will see the charge effects

shortly.

It has been shown [14] that the presence of polarisation leads to much rougher

liquid-vapour surfaces for ionic fluids.

This (several effects, including entropy, effects may oppose each other)

can be partially explained by the need to minimise the energy, which favours the

asymmetric environments where the dipoles aren’t cancelled. Another factor is the

system entropy - the rougher surface has more potential configurations, and hence

a greater entropy.

These might be expected to cause polarisation to incite cavitation. However, we

find the opposite is true, and polarisation inhibits cavitation.

Clearly there are a number of factors at play here. In the rigid system, ion-ion

charge interactions have a notable effect. By cavitating we increase the density

in the region where the ions are; a process which is coulombically favourable, but

which may or may not lead to an increase in free energy. Also, as we decrease

the density, the system has fewer and fewer potential configurations it can be in,

and eventually there is a large entropic gain by forming a fault. In the polarisable

system, in addition to the ion-ion charge energy (which favours density increase

and cavitation), we also have the dipole effects of polarisation. The polarisation

shields like ion interactions, which means the system will have more configurations

at a given density than a rigid system, and will be more able to respond to a stress

without cavitating. Finally, we have an extra entropy term arising from the dipoles

on the polarisable anions at the surface, which have a variety of possible alignments.

All of these together lead to polarisation inhibiting cavitation.
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4.3 ε(0) Results

As we saw in section 1.5, the use of corresponding states and reduced variables

increases the applicability of theories. Previously, no work has been done on finding

an appropriate reduced parameter for describing the dynamic properties of simple

polarisable ionic systems. In the next two sections, we will consider two candidates

for a dynamic properties reduced parameter, and see how well they work. We

will examine the variation of the diffusion coefficients for a series of systems with

different polarisabilities (and densities in section 4.5), and see if the behaviour can

be accounted for by a single dimensionless quantity, which measures the strength of

the polarisation effect.

Two of the obvious choices for our dimensionless quantity (which we will be

plotting our data against) are ε(0) (the static dielectric constant) and ε∞ (the high

frequency dielectric constant). It should be noted that these dielectric constants are

associated with the anion’s dipoles, and not with charge rearrangements. As was

seen in section 1.6, many of the properties of interest are themselves average prop-

erties. Since the static dielectric constant covers averages over long timescales, we

postulate that the static constant could be the better of the two dielectric constants

to consider.

The value for ε(0) can be found by fitting to the first part of Szz curve. At low

values of q, the structure factor may be expanded out in the form S(q) = Λ2
Dq2 +

O(q4). From the Stillinger-Lovett conditions, we know that (Λ
(rim)
D )−2 = 4πβρ.

We also know that if the rigid ions were embeded in a dielectric continuum, then

Λ−2
D = 4πβρ

ε0
= (Λ

(rim)
D )−2/ε0, and hence Λ2

D = ε(0)(ΛRIM
D )2. In these, and future

equations, β = 1
kBT

.

By applying the above relationships to our simulation results for the polarisable

fluids, we can come up with an expression for the structure factor in terms of ε(0),

an effective dielectric constant. This allows us to find values for ε(0) from curve

fitting to the low q structure factor. The equation is:
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S(q) = (ΛRIM
D )2q2ε + O(q4) (4.1)

As was seen in figures 4.2 and 4.1, there is a very good agreement between the

simulation values and the theory values for Szz. Equation 4.1 shows that to find our

values of ε(0), we can fit to the low q values of Szz, provided we have previously found

ΛRIM
D . Since q is inversely proportional to distance, the lower the q value required,

the larger the simulation box size needs to be. As has already been mentioned, one

of the advantages of the theory is it allows us to get information for larger length

scales than the simulation would yield, for similar expenditure in computing time.

The data available from the simulation doesn’t go out to low enough q to allow

an accurate curve fit. The fitting is very sensitive to the number of values available,

and for the simulation sizes used, it isn’t possible be confident in a fitted value from

the data. As such, it isn’t possible to accurately determine a value for ε(0) from

the simulation runs. Instead, the theory was used to calculate values for Szz and

ε(0). The low q values for Szz were plotted against the simulation values, and it

was ensured that there was a good match. Since the two agreed on the lowest q

Szz values accessible in the simulation, it is possible to use the theoretical values for

ε(0).

Unfortunately, the theory runs have problems converging at large values of α,

which leads to us only having Szz curves for the smaller polarisabilities. This means

we can only plot out the diffusivities against ε(0) for a limited number of points.

Looking at figure 4.7, we see that both the anions and cations show a temperature

dependence in how their diffusivities change with ε(0). We also see that generally,

the cations have higher diffusivities than the anions.

As a result of the limited number of data points (both in terms of temperatures

and against ε(0)), it is not possible to accurately quantify the relationship of the

diffusivities to ε(0) and temperature. Studies at a number of extra temperatures

(both a wider range, and with smaller jumps) are really needed. In order to get

35



Figure 4.7: Showing the effects of polarisability (via ε(0)) on the diffusivity. Cations
show greater diffusivity, and both ions show a temperature dependence. The tem-
perature is in scaled units.

these extra data points, either the theory will need tweaking to allow it to converge

at higher polarisabilities, or the MD runs will need to be done with larger box sizes

(allowing better low q fits, but with a large increase in computation time).

Looking at the graphs, it is not possible to come up with any sensible empirical

fits as we do in other areas. The temperature dependence is simply too complex to

be fitted to a simple form, and there is no point producing an empirical relationship

with fractional temperature dependence powers based on such a small data set.

However, our data is sufficient to show the general trends in behaviour - that there

is a temperature dependence in the ion’s diffusivities, and that the cations tend to

diffuse slightly faster than the anions.

From the above, it appears that ε(0) is not a good choice for a reduced parameter

to describe the dynamic properties.
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4.4 ε∞ Results

Unlike ε(0), ε∞ has a very simple relationship with polarisability, for small values

of α0ρ, such as those examined here. For this region, it is given by the Clausius-

Mossotti equation:

ε∞ − 1

ε∞ + 2
=

4πρ(anion)α0

3
(4.2)

ε∞ =
3 + 8πρ(anion)α0

3 − 4πρ(anion)α0
(4.3)

This makes it much easier to calculate and work with than ε(0), as we require no

graph fittings, and can therefore get data out to much higher polarisabilities.

Figure 4.8: Showing the effects of polarisability (via ε∞) on the diffusivity. Cations
show both a temperature dependence and a greater polarisabilty effect, while Anions
don’t.

Looking at figure 4.8, we see that we largely have straight lines. The cations

have a greater polarisability effect than the anions, and the cations also show a tem-

perature dependence. We shall propose a possible explanation for this dependence

shortly.

It is possible to come up with empirical relationships for the diffusivities in the
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regions under investigation. However, we do not have data from a sufficient number

of temperatures to properly find the temperature dependencies of the diffusivities.

As such, the following relationships should be treated merely as empirical fits, and

not as indicative of some underlying theoretically justifiable relationships.

Anion (polarisable species) diffusion appears to show no temperature dependence

in the region of investigation. Its diffusion alters with ε∞ (alpha changes) as:

Anion MSD Difference = RIM + 0.027ε∞ (4.4)

Cation (rigid species) diffusion does appear to show a simple temperature de-

pendence. Its diffusion alters with ε∞ (alpha changes) as:

Cation MSD Difference = RIM +
3.73ε∞

β
(4.5)

As the Nernst-Einstein conducivity is the species weighted average of the ion

diffusivities, it also shows a temperature dependence. Its value alters with ε∞ as:

Nernst-Einstein Conductivity = RIM +
2.63ε∞

β
(4.6)

In all of the above, the diffusion coefficients are realted to the MSD Difference

by a constant scaling factor.

We can see that the cation’s diffusivity is showing a temperature dependence

with the anion’s polarisation, and yet the anion’s doesn’t show such a dependence.

To attempt an explanation of this behaviour, we need to consider the effect of

polarisability on the ion’s movements. In a very simple manner, the diffusion can

be considered as ions moving from one site largely surrounded by opposite ions,

through a small gap (typically between opposite ions), and out into a new site. The

motion will most likely be between opposite ions, as the energetics of moving close

to like charged ions will largely preclude this as a migration path. From figure 4.9,

we can see that the cation’s migration will be assisted by the dipoles induced in

the surrounding anions. However, no such dipoles are found when an anion moves

between cations. It seems likely that the presence of the dipoles in the cation case
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causes a marked difference in the activation and transition state energies between

the anions and the cations. This manifests itself both in the greater diffusivity for

the cations compared to anions, and in the temperature dependence that is seen.

anion

cation

anion cation

cation

anion

Figure 4.9: A stabilising dipole is generated during cation migration but not during
anion migration. This affects the transition state energies, and may explain the
diferening temperature dependencies.

The cations are more mobile than the anions. In both, we see a cation tem-

perature dependence, albeit a more simple one for ε∞. The big difference is with

the anions, where there is apparently no temperature dependence with ε∞, while a

complex one is seen for ε(0). They are equally as noisy, as we are using the same

data, just picking where along the x-axis to plot the data. It is simply how the x

value changes with polarisation that affects what temperature dependence we will

see.

From these two sections, we can see that ε∞ seems to be a better reduced pa-

rameter for diffusion than ε(0). However, we do still have an apparently simple
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temperature dependence for the cation diffusion, which isn’t ideal. More data is

required to verify that the temperature dependencies really are as simple as they

appear. What we can say is that for the time being, ε∞ looks like our best bet for

a reduced parameter, despite it being on a different timescale to the properties of

interest.

4.5 Variable Density

In section 4.2, we looked at how polarisation and density affected the mechanical

stability of the system. We were looking at the effects of density on a polarised

(α0 = 0.100) and a rigid system (α0 = 0.000), with an eye to cavitation. In this

section, we will be looking at the effects on diffusion, for the non-cavitated regions.

Figure 4.10: Showing the effect of density and polarisation on the Pressure. The
negative gradients indicate a region where cavitation has occured.

Firstly, we need to use figures 4.5 and 4.10 to ascertain the regions of cavitation

and non cavitation. These have been marked onto figures 4.11 and 4.12, so we can

be sure to only include the regions of mechanical stability in our studies on diffusion.

Looking now at these non-cavitated regions in the figures 4.11 and 4.12, we see

that the graphs of diffusion against density for these regions are made up of straight
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Figure 4.11: Anion diffusivity with
temperatue and density. Polarisability
makes the system more mobile.

Figure 4.12: Cation diffusivity with
temperature and density. Polarisabil-
ity makes the system more mobile.

lines. It is possible to express the diffusivities for these regions with empirical

equations specific to the appropriate values of α and β:

for PIM at α=0.100, Anion MSD Difference =
500 − 815ρ

β2
(4.7)

for PIM at α=0.100, Cation MSD Difference =
530 − 830ρ

β2
(4.8)

for RIM (α=0.000), Anion MSD Difference =
440 − 700ρ

β2
(4.9)

for RIM (α=0.000), Cation MSD Difference =
430 − 670ρ

β2
(4.10)

for PIM - RIM, Anion MSD Difference =
70 − 120ρ

β2
(4.11)

for PIM - RIM, Cation MSD Difference =
100 − 160ρ

β2
(4.12)

Unfortunately, with data from only two values of α, it is not possible to test the

applicability of equations 4.4 and 4.5 to the above relationships. We would need

to run simulations at a wide range of polarisabilities (probably a minimum of three

more, but ideally a similar number to in section 4.4) to test this.
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Also, with data from only three temperatures, it is not possible to be confident

about the generality of the temperature dependences seen. As such, the above

equations must only be regarded simply as empirical relationships for the regions

under study, and not indicative of some theoretically justifiable global relationship.

Only studies at a wider range of temperatures, coupled with theoretical study would

be sufficient to achieve this. However, we can be relatively sure of the trends - that

the cations are more mobile than the anions, polarisability increases mobility, as

does temperature, while increasing density reduces the diffusion coefficients.

In this section, we have only considered the diffusivity data for the non cavitated

region. In the cavitated region, the values have much less significance, as the system

contains large empty spaces. It might be of interest to try to calculate a density for

the ions only (i.e. without the cavitated space), possibly via a Monte-Carlo filling

method on the cavity. We could then calculate the diffusion coefficients for a normal

system at this density. The difference in the diffusion coefficients between these two

systems will tell us something about the effect of the cavity surface on the diffusion.

We will expect the cavity surface to cause there to be two different diffusion rates,

one parallel to the surface and one perpendicular to it. The comparison of the

diffusion coefficients may give some insights into the relative magnitudes of these,

as so is probably worth of future study.
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Chapter 5

Investigating ScCl3

5.1 Main Results

For the investigation of ScCl3 [2], runs were done for a number of densities and

temperatures. The temperatures used ranged from 1150k to 1300k, which is around

the experimental melting temperature. The box sizes used varied from 50.0 au to

53.5 au, which is around the experimental density for the temperature range. Also,

a RIM run at 1250k was done, to look at the effect of polarisability on this more

complex system.

All runs were done for 400,000 steps, and data was taken from an average of 2

independent runs at any state point (see section 2.2). The simulations were done

with a system of 500 ions (125 molecular units).

5.1.1 Neutron Scattering

For this section, the experimental data comes from reference [26]. It was measured at

a temperature of about 1250K, and a density of around 1.643gcm−3 (corresponding

to a simulation box size of 50.532 au).

Looking at figure 5.1, we can see that our system has quite a good agreement

with the experimental data when we use polarisability. The effects of temperature

and density seem to be quite slight. They affect the pre-peak (known in experimental

circles more commonly as a First Sharp Diffraction Peak or FSDP), and the first

part of the main peak. Otherwise, the effect on the tail is minimal, with almost no
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changes in peak heights or the period of the fluctuations.

Figure 5.1: The Neutron Scattering
Pattern of ScCl3 with polarisability.

Figure 5.2: The Neutron Scattering
Pattern of ScCl3 at one density.

Figure 5.3: The Neutron Scattering
Pattern of ScCl3 for one temperature.

Figure 5.4: The Neutron Scattering
Pattern of ScCl3 without polarisability.

Also looking at figure 5.1, there are a few features of interest that should be

pointed out. The first is the pre-peak, at a k value of about 1Å. This corresponds

to intermediate range ordering in the system, which is somewhat unusual in molten

salts. On looking at the simulation cell, we can see long chains of ScCl3, with gaps

between them. The pre-peak is caused by this intermediate range ordering [27].

What is also interesting is that as we’ve moved into a more complex system from

the SMS, we’re seeing features like this. It will be interesting to see if a scaled

parameter model for an MX3 system can easily predict such a thing, when the
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theory is extended to account for more complex stoichiometries than MX. However,

it is expected that a system using scaled parameters will not get the intermediate

range part correct, though it is thought that it probably will correctly model the

long range components.

Figure 5.2 shows us two things, the effect of temperature and the effect of po-

larisability. Taking the temperature first, we see a remarkably small effect. The

exact location and height of the pre-peak shows very slight shifts, indicating that

the increased molecular motion with temperature isn’t having much of an effect on

the long range ordering. We can also see that none of the temperatures really takes

the pattern any closer to the experimental pattern. Looking at the effect of polar-

isability shows a much more dramatic alteration. The rigid runs produce scattering

patterns that are clearly very wrong. The period of the fluctuations is somewhat

off, and the amplitudes are very very wrong. From this we can see that rigid runs

give very poor structural agreement on complex systems.

Moving on to figure 5.3, we can look in detail at the density effects. The pre-peak

is the main change, with the position and height of the maxima changing density.

The second peak also shows some change - the lower densities have a larger saddle

point in the main peak, while the higher density ones have this feature smaller but

the main peak larger. The other peaks are largely the same.

Finally, we look at figure 5.4, showing the effect of density on the rigid runs. We

can again see how poor a fit the rigid runs give for the neutron pattern, and hence

the structure in general. The period of large k oscillations are wrong. At short k,

the amplitudes are wrong, especially in the second peak. Finally, the pre-peak is

very wrong, indicating that the rigid system is unable to generate the intermediate

range ordering. Looking specifically at the density effects, we see very little. About

the only noticable effects come in the pre-peak, and the exact positioning of the

second and third peaks.

In general, we can see that the rigid runs very poor at getting structure cor-
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rect. As such, polarisable runs must be done when trying to study systems of this

complexity.

While the current potential for the polarisable system is close, it could still

use some more work to further improve its fit to the experimental structure. One

possible way to achieve this is via reverse Monte-Carlo fitting [28, 29].

5.1.2 Pressure

Figure 5.5: The Pressure of ScCl3 as the density
is altered, for various temperatures. The RIM
curve is scaled by a factor of 10

Figure 5.6: The Pressure
Difference of ScCl3 as the
density is altered, for var-
ious temperatures. The
RIM curve is scaled by a
factor of 0.1

It is clear from looking at figure 5.5 that there is a complex relationship between

the density, the temperature and the pressure. In order to be able to properly

quantify this relationship, we would need significantly more results. These should

be both over a wider range of state points, and with finer grained changes (such as

box size changes of 0.25 au, temperature changes of 25k etc). Without this extra

data, we can’t say much about the effects on pressure.

However, one thing we can easily note is the effect of polarisation on increasing

the system’s stability. This effect is very much greater than was seen with the

theoretical system in section 4.2, owing to the greater complexity of the system.
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The rigid system shows the opposite trend with density to the polarisable ones.

This is indicative that a rigid simulation just doesn’t model the system properly,

as the effect of polarisability is crucial in modeling the thermodynamics of a ScCl3

system.

We should also note that the pressure in the rigid system appears to be behav-

ing unphysically. The fact that the pressure is increasing as the volume increases

indicates that the system is mechanically unstable, since it has a negative compress-

ability. This indicates that perhaps it is near the point of cavitation. It is also

possible that the rigid system has an equilibrium density at 1250K that is greater

than the polarisable runs, which would explain the minima at low box length (high

density). Further runs with both smaller and larger box sizes would be needed to

confirm or deny these ideas.

Looking at the pressure differentials in figure 5.6, we can see that there isn’t a

very large temperature effect in how the pressures alter with density. The average

of the different temperatures shows this, but also highlights that the change with

density isn’t linear. Clearly, the behaviour of the system is much more complex

than the theoretical model in chapter 3. As mentioned above, data from more

temperatures and a wider range of state points would be needed to quantify this

relationship.

5.1.3 Diffusion

Looking at figures 5.7 and 5.8, we see there is a temperature dependence on the

diffusivities. As we only have data from a very limited number of temperatures, we

can’t really quantify this relationship with any certainty.

However, looking at the scaled diffusivities in figures 5.9 and 5.10, we see the

scaling has removed the temperature dependence. The scaling has been done by

dividing all values by the lowest density value. This was simply done for convenience,

and scaling by any of the values will give a similar pattern.

In figures 5.9 and 5.10, we note that the average over all the temperatures are
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Figure 5.7: The Diffusion of the ScCl3
Anion, showing temperature and den-
sity effects.

Figure 5.8: The Diffusion of the ScCl3
Cation, showing temperature and den-
sity effects.

pretty much straight lines. This tells us that not only has the scaling removed the

temperature dependence, but that it has left us with a simple relationship after-

wards. It will be interesting to see how well this simple relationship holds as the

range of temperatures studied is extended.

For the region of interest, we can devise some empirical relationships for how the

scaled diffusivities vary:

anion diffusion

anion diffusion(ref)

= 1 + 0.20(ρ − ρ(ref)) (5.1)

cation diffusion

cation diffusion(ref)

= 1 + 0.25(ρ − ρ(ref)) (5.2)

From equations 5.1 and 5.2, we can see that the cations show a greater density

effect. This is interesting, as the anions have higher diffusivities than the cations, as

shown in figures 5.7 and 5.8. Another sign that the ScCl3 system is more complex

than the theoretical one is that we cannot make a prediction for the absolute value in

the region of interest. Unlike equations 4.7 and 4.8, we can only list relative values,

and not absolute ones. Also, as the rigid simulation is such a poor representation

of the system, we can’t come up with equations related to the RIM runs (such as
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Figure 5.9: The Scaled Diffusion of the
ScCl3 Anion. Scaling has removed the
temperature effect.

Figure 5.10: The Scaled Diffusion of the
ScCl3 Cation. Scaling has removed the
temperature effect.

equations 4.4 and 4.5).

Clearly, the ScCl3 system is much more complex than the theoretical model.

Tricks such as scaling are required to simplify the system sufficiently to allow us

to produce empirical relationships. However, the fact that such a trick is sucessful

gives hope that a general relationship might be possible. With a wider range of den-

sities and temperatures, the above relationships can be extended. Once theoretical

backing can be found for the equations given in sections 4.4 and 4.5, perhaps it can

be extended to produce proper relationships for the diffusivity in ScCl3. For now,

we will have to make do with MD supplied empirical relationships for the diffusion.

5.1.4 Viscosity

Looking at figure 5.11, we see that the viscosity shows a temperature dependence,

and is somewhat noisy, despite the fairly long run length and the averaging. Using

a similar trick to with the diffusion (section 5.1.3), we can scale the values by the

lowest density value, as seen in figure 5.12. This scaling removes the temperature

dependence in the viscosity, for the region of investigation, but makes the errors in

the values more obvious. By averaging over all the temperatures, we simplify the

picture, by averaging out much of the noise.
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Figure 5.11: The Viscosity of ScCl3, show-
ing temperature and density effects, but
without a simple temperature dependence
being present.

Figure 5.12: The Viscosities of ScCl3
scaled by the 50.0 box size value for
each temperature, showing the density
effect. The scaling has removed any
temperature dependency.

Looking at the average in the scaled graph, we see an almost straight line. From

this, it is possible to come up with an empirical relationship for the viscosity of

ScCl3, for the region of investigation:

viscosity(au) = 1 − 0.19(ρ − ρ(ref))

viscosity(ref)

(5.3)

Any value from the region can be used as the reference point. Data from many

more temperatures will be required to quantify the temperature dependence, and

hence come up with a general formula including density and temperature for the

region of interest.

For the rigid runs, it was not possible to calculate the viscosities. The stress cor-

relation functions did not converge in the timescale of the simulation, unlike with

the polarisable runs. This indicates that transport properties in the rigid system are

occuring on a different (longer) timescale to the polarisable system. Clearly, polaris-

ability has a big role to play in facilitating the dynamics, possibly due to stabilising

effects on the intermediate states, or lowering activation energies. Once more, we

see an example of how the rigid system differs markedly from the polarisable system
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in ScCl3, where only a minor alteration was seen with the theoretical model.

5.2 ScCl3 vs Theoretical Model

We can see that the two systems are quite different in terms of complexity. With

the PSMS, the rigid ion runs differed from the polarisable ones, but gave results in

the same ball park. With ScCl3, the rigid runs were very wrong, giving answers that

were very different. The empirical relationships from one system is unsurprisingly

untransferable to the other. Without more data, it is not possible to come up with

more general relationships (ideally involving reduced variables) to test how well they

might match up.

The MD method was able to easily deal with both systems. However, the the-

oretical model is currently completely incapable of handling an MX3 system. That

said it has recently been extended to handle MX2 systems (including ZnCl2), so it

shouldn’t be too long until it is able to handle MX3 systems like ScCl3. While the

MD runs take longer than the theory calculations, the MD runs are currently able

to handle a wider range of systems.

As was seen in section 1.4, MD and theory currently complement each other.

For some types of systems, only one will work, but in an increasing number of areas,

both will work, and yield data from different areas.

In the theoretical model, the RIM came quite close to representing the dynamic

properties of the system. In chapter 4, we saw quite a number of equations which

quantified how far off the RIM was from the correct value. For some applications,

these may be small enough for it to be of use.

With ScCl3, the RIM was a long way off. In general, it was so far off as to be

of no use. Section 5.1.1 showed that the structure was completely off for the rigid

runs. In section 5.1.2, we saw that the thermodynamics and stability of the system

were very wrong. Section 5.1.3 showed that the diffusion coefficients were not only

wrong, but showed the wrong trends with density to boot. Finally, in section 5.1.4,
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we discovered that the stress correlation functions didn’t converge in the timescale

of investigation, indicating the system is behaving on different dynamic timescales.

Clearly, ScCl3 is much more complex than the theoretical model. Given that

the theoretical model was designed to be simple, to improve calculation speeds, this

shouldn’t be a suprise.
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Chapter 6

Conclusions

6.1 Run Lengths and Averaging

We have seen that averaging runs can be a powerful technique. It can lead to more

accurate results for a given expenditure in computer time than extending run lengths

does. For groups with access to clusters, it can allow for efficient computing resource

usage, yielding high accuracy results with shorter length runs. It also offers an easy

way to take advantage of the power of clusters, which are now more common. It is

hoped that other simulational chemists will be able to learn from this work in the

areas of cluster use and averaging.

With care, the cluster specific code (MPI or similar) can be abstracted away from

the simulation code. This approach allows those with less parallel programming

knowledge to take advantage of clustering, and also increases the applicability of

any clustering logic to other simulation code.

When investigating averages, we must be careful about repeatable values vs long

time values. The best way to avoid the pitfall is to ensure we test values out to

longer run lengths than we intend to use, to check the value has stabilisied.

6.2 System Size Effects

While computational resources will generally restrict that largest simulation size we

can use, we should still investigate what effect this is having on our results.

For our studies, the system size effects were slight, but not always insignificant
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(eg ScCl3 viscosity). In an ideal world, we would’ve used larger simulation sizes, but

computing resources prevented us from doing so.

6.3 Theoretical Model Work

With this, molecular dynamics met theoretical models. We saw that MD simulations

compelment theories - both have their strengths and weaknesses. MD simulations

are good for dynamic properties and thermodynamic properties, while the theory

calculations can handle much larger system sizes, and are generally faster.

In our search for a reduced parameter to express dynamic properties, ε∞ appears

to be better than ε(0), but it still isn’t perfect.

We came up with a number of empirical formulae in chapter 4. Several of these

could be particularly helpful in assisting people to decide on the effects of polar-

isation to their system. Armed with them, it is possible to quantify the effect of

polarisaiton, and hence decide if a rigid run will be accurate enough, or if a polar-

isable run is really required.

6.4 ScCl3 Work

ScCl3 is a much more complex a model than than the theoretical one in chapter 4.

The rigid runs were much worse than than they were for the theoretical system.

Unlike the theoretical system, the rigid runs don’t properly model the system, and

so the results from rigid runs are typically very wrong. As such, we need to include

polarisability in this, and similar systems. The RIM appears to be only suitable for

a very narrow range of systems.

The Pressure, Neutron Scattering Pattern, Diffusion and Viscosity are much

more complex than in the theoretical model. We couldn’t make as many empirical

predictions as for the theoretical model, and we had to use reference values much

more.
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Appendix A

Files and Calls for MPI Helper

This section should talk you through how to use and extend the MPI helper routines

for the Madden group code.

A.1 Include Files

Below is a list of all the fortran include files, what they bring in, and why you might

wish to use them.

A.1.1 build-paths.inc

Everything you need to go mangle the path settings.

Normally only used by paths-helper.f (A.2.3)

A.1.2 mpi-tweaks.inc

Stores the tweaks to variables due to the MPI environment.

You add to these variables when you read in your MPI settings (eg read in

“Temperature +5 per thread”), and the scaling by thread number is handled for

you. You then need to add the onto the main values, at the point where you read

those in.

Normally only needed by readin routines (MPI and normal)

Details of adding new variables are covered in section A.3
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A.1.3 use-mpi.inc

All you need to do “real” MPI calls, as well as to play with the MPI related settings.

If you just care about things like the thread number, there are calls you can

make to find out, without needing to pull this in.

Used by anything that interacts directly with MPI calls, and anything that gets

quite close.

A.1.4 uses-files.inc

All you need to work with file names

Allows you to get a path added onto a filename, but without the ability to go

play with pathnames (which is where build-paths.inc (A.1.1) comes in).

A.2 Helper Routines

A.2.1 mpireadin.f

Reads in the file for-mpi.inpt. Initially uses this to decide if the MPI environment

should be set up or not.

Then, uses the values in the file to set up the mpi-tweaks.inc (A.1.2) variables,

based on the values in for-mpi.inpt and the thread number. These variables control

the tweaks to things like the temperature, rcut, the potential etc.

To add support for changing a variable across threads, see section A.3

A.2.2 mpi-helper.f

Setup MPI

Does all the MPI setup for you, fills up the handy variables etc.

Should only be called if usingmpi is true and MPI was compiled in...

This should be your first call

Shutdown MPI

Shuts down the MPI environment.
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However, it does not notify the other threads, so you need to do that some other

way firsr (eg MPIAwaitFinish).

Abend MPI

Does it’s best to send out an “I’m gone” message to thread zero, then shuts down

the MPI environment.

Normally only used after an unrecoverable error somewhere.

MPISignalCheck

Performs some Voodo magik to decide if your current run is small enough to run

with the fast asyncronised calling, or if you’ll need syncronised calls. Sets up any

variables as needed for you, to be used by MPIPingPong.

This is needed because of bugs in the MPI environment. If you hit issues with

threads stalling and giving you grief about closed nodes, try reducing the threshold

in here.

MPIAwaitFinish

For non thread zero, sends out an “I’m finished” message and returns.

For thread zero, it waits for all the “I’m finished” messages to come in (via calls

to MPIPingPong), and waits until they’re all done. Also prints out periodic “Still

Waiting” messages.

MPIPingPong ( some int )

Sends a status message (the argument) between the threads.

This could be send syncronously or asyncronously (see MPISignalCheck), back

to thread zero. Thread zero collates these and prints them out, and also checks for

other status messages.

SubFetchThread ( some int )

Pops the Thread number into the supplied integer
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FetchThread

Returns the Thread number as an Integer

MPIVarCheck ( some double )

Checks to see if that double is unique across all the threads, and returns this fact

as a logical.

Thread zero always gets back False, as it doesn’t need to do anything. If two

threads clash on a value, one will get True (a clash, and it needs to do something)

and one will get False (no clash, and doesn’t need to do anything), depending on

the order they report in.

Handy for checking if random seeds differ etc, and would also be a good starting

point for any more complex cross-thread variable checking routine.

A.2.3 paths-helper.f

addpath ( ’type’ , ’path’ )

Adds the specified path to the paths list, with to be accessed when people ask for

that specific type.

bf ( ’type’, ’filename’ )

Locates the path for that type, then glues it onto the filename for you, and returns

the combined lot.

Replace file=’foo’ with file=bf(’foos type’,’foo’) in open, inquire etc to use.

A.3 Adding new MPI “tweak” variables

Start off adding the variable / variable array to the mpi-tweaks.inc (A.1.2) file.

Firstly, add the variable name to the “Friendly Interface” section, towards the bot-

tom. This will define the variable.

Next, go down to the equivalence block at the bottom. Equivalence in the new

variable (/ array) to the next spare space(s) in the mpi block of the correct type.
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Finally in mpi-tweaks.inc, increase the size of mpi arrays if needed (they’re de-

fined as parameters towards the top).

With all that done, your variables will be zeroed and scaled as required auto-

matically for you (that happens on the arrays), and you’ll be able to access them

by a sensible name.

Now, you need to be able to read in the tweak values. You’ll do this in mpireadin.f

(A.2.1). During the readin section, you should add your readin at the end. Clone

an existing block, so you have a true / false to activate it, and then read in any

parameters as needed (into your newly defined variables).

Finally, go and edit whichever of readin.f or setup.f is appropriate. Find where

the reading in of the main variable happens, and add on the mpi difference variable

to it. The MPI setup and readin routines will set the difference variable to the

required value, or ensure it’s zero for non mpi runs.

A.4 Handy Utilities

A.4.1 *.pl

Can be found in /home/MrDaydream/burch/bin/

A.4.2 *.sh

Can be found in /home/MrDaydream/burch/bin/

A.4.3 *.x

Can be found in /home/MrDaydream/burch/anal code/

A.4.4 makefile

Can be found in /home/MrDaydream/burch/mpi/bulk code mpi/
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A.5 Handy Data Handling Utilities

A.5.1 average-few.pl

Given a start and end number, and a file name, averages the files from the output

directories together, into the current directory.

A.5.2 average-several.pl

Given a series of file names, averages the files into a new file based on the common

name, in the current directory.

A.5.3 collate-averages.pl

Given a file name and a number of runs, builds up a series of files for increasing

numbers of averages. Normally used during run length and average testing.

A.5.4 do-*.sh

A series of files to automate the data collation and calculation. Each is specific, but

there should be a template for most tasks here.

A.5.5 scale-file.pl

Scales the values of column 2 or columns 2+, based on the first value in each column.

A.5.6 two-line-merge.pl

For files that’ve been split over two lines and XMGrace throws a wobbly, sticks them

back together

A.5.7 avgpres.x

Averages over the 3 pressure directions, spitting out a new file of the average pres-

sure.

A.5.8 avgstr.x

Averages over the 5 stress tensors, spitting out a new file of the average stress.
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A.5.9 find-pres-avgs.x

Scans a pressure average file, and reports the average pressure for the length of that

run.

A.5.10 find-snn.x

Calculate the Snn (number-number structure factor)

A.5.11 find-szz.x

Calculate the Szz (charge-charge structure factor)

A.5.12 positions-to-pdb.x

Convert a positions.out file to the PDB (protein database) format, so it can be

used with the PovChem to produce PovRay files. Important step in making pretty

pictures...

A.6 Handy Run Related Utilities

A.6.1 check-loads.pl

“Walks” around the machines in the lab, and reports back their current load status,

sorted by load. Requires SSH keys or typing lots of passwords.

A.6.2 check-nice.pl

“Walks” around the machines in the lab, and ensures that all your jobs are properly

“niced”. Requires SSH keys or typing lots of passwords.

A.6.3 find-machines.pl

“Walks” around the machines in the lab, finds the least used, and builds an MPI

machines file of these. Requires SSH keys or typing lots of passwords. Really you

ought to use your own machine for testing, or Oswald for runs, but this might be

handy for any new clusters.
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A.6.4 run-new-*.sh

Scripts to handle creating new directories, copying input files and startup positions

etc. Each is specific to a type of run, but most are useful as templates.

A.6.5 summary.pl

Figures out stuff about a run, like how long it’s been running, how long it’s got left

to go, when it last ran etc

A.7 Handy Programming Utilities

A.7.1 makefile

Has all sorts of magic in it, so that you can do make MPI=yes and it’ll work the

rest out for you. Allows you to have one code base with MPI and non MPI parts,

and compile it selectivly.

A.7.2 check-RCS

Ensures that all fortran, include and tex files, as well as makefiles in the current

directory are in RCS and checked in.

A.7.3 find-types.pl

Goes through a common.inc file, and figures out what variables haven’t been explic-

itly definded, and spits out the appropriate lines.

Lets you get from implicit real to implicit none

A.7.4 varmake.pl

A wrapper for ifc, that catches “variable not defined” errors, as caused by swapping

implicit real for implicit none. It counts up the uses of that variable, prints out the

lines using it, and finally gives you the explicit define blocks for them.
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